written 2.9 years ago by | • modified 2.9 years ago |
2) Solution : -
Let us assume that Prices (In Rs) are variable X and sales units are variable Y.
Calculation of Karl Pearson’s coefficient of correlation : -
Here,
$\sum X = 915$
$\sum y = 6850$
$X̂ = \frac{\sum X}{n} = \frac{915}{10} = 91.5$
$ŷ = \frac{\sum y}{n} = \frac{6850}{10} = 685$
a = X - X̂
b = y - ŷ
$\sum a*a = 244.5$
$\sum b*b = 74250$
$\sum ab = -3485$
$Now,\ coefficient\ of\ correlation,\ r\ =\ \frac{\sum ab}{\sqrt{\sum a*a}{\sum b*b}}$
$\therefore\ r\ =\ \frac{-3485}{\sqrt{244.5\ *\ 74250}} =\ -0.817928.\ Ans$
Calculating coefficient of correlation by Python in-built function : -
Input -
import numpy as np
x_simple = np.array([100,98,85,92,90,84,88,90,93,95])
y_simple = np.array([500,610,700,630,670,800,800,750,700,690])
ans = np.corrcoef(x_simple, y_simple)
print(ans)
Output -
[[ 1. -0.81792809]
[-0.81792809 1. ]]
3). Solution -
import pandas as pd
d = pd.read_csv('book1.csv')
d
d.shape
(7,2)
import matplotlib.pyplot as plt
%matplotlib inline
plt.scatter(d['Age of Cars (in yrs)'], d['Annual Maintanence cost (Rs.)'])
plt.xlabel('Age')
plt.ylabel('Cost')
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(d[['Age of Cars (in yrs)']], d['Annual Maintanence cost (Rs.)'])
LinearRegression()
model.predict([[3]])
array([1588.57142857])
model.coef_
array([52.85714286])
model.intercept_
1430.0
Here, Intercept is c and coefficient is m.
Here, As you can see the predicted maintenance cost of the 3 year old car is Rs.1588.5714. and the linear equation will will be y = mx + c = 52.85714286 * 3 + 1430 = 1588.55. Ans.