Solution :
Given :
Length of pipe 1,
$ L_{1}=L$ and its diameter $d_{1}=D$
Length of pipe 2,
$ L_{2}=L$ and its diameter $d_{2}=d$
Total discharge $=Q$
Head loss when pipes are in parallel $=h$
Head loss when pipes are in series $=H$
$d=\frac{D}{2}$ and f is constant
Case 1:
When pipes are connected to parallel
$Q=Q_{1}+Q_{2}................(i)$
Loss of head in each pipe $=h$
For pipe $A B$,$\quad \frac{4 f L_{1} V_{1}^{2}}{d_{1} \times 2 g}=h$,
where
$$\begin {aligned}
V_{1}=\frac{Q_{1}}{A_{1}}=\frac{Q_{1}}{\frac{\pi}{4} D^{2}}=\frac{4 Q_{1}}{\pi D^{2}}
\end {aligned}$$
$$
d_{1}=D
$$
For pipe A C,
$\begin{aligned}h= \frac{32 f L Q_{2}^{2}}{\pi^{2} d^{5}\times g} \end{aligned} ...............(ii)$
$$
\begin {aligned}
\therefore \frac{32 f L Q_{1}^{2}}{\pi^{2} D^{5} g}
&=\frac{32 f L Q_{2}^{2}}{\pi^{2} d^{5} g} \text { or } \\
\frac{Q_{1}^{2}}{D^{5}}
&=\frac{Q_{2}^{2}}{d^{5}}
\end {aligned}
$$
or
$
\begin{aligned}
\left(\frac{Q_{1}}{Q_{2}}\right)^{2} &=\frac{D^{5}}{d^{5}}=\frac{(2 d)^{5}}{d^{5}} \\
&=2^{5}=32 \\
\frac{Q_{1}}{Q_{2}} &=\sqrt{32}=5.657 or \\
Q_{1} &=5.657 Q_{2}
\end{aligned}
$
Substituting the values of $Q_{1}$ in equation (i), we get
$\begin{aligned}
Q &=5.657 Q_{2}+Q_{2} =6.657 Q_{2}\\
\therefore Q_{2} &=\frac{Q}{6.657}\\
&=0.15 Q \\
\text{From (i)} \\
\therefore Q_{1} &=Q-Q_{2} ...........(iii)\\
&=Q-0.15 Q \\
&=0.85 Q.............(iv)
\end{aligned}$
Case 2 :
When the pipes are connected in series.
Total loss = Sum of head losses in the two pipes
$$
\therefore H=\frac{4 f L V_{1}^{2}}{d_{1} \times 2 g}+\frac{4 f L V_{2}^{2}}{d_{2} \times 2 g}
$$
where
$\begin {aligned}
V_{1} &=\frac{Q}{\frac{\pi}{4} D^{2}}=\frac{4 Q}{\pi D^{2}}, \\
V_{2} &=\frac{Q}{\frac{\pi}{4} d^{2}}=\frac{4 Q}{\pi d^{2}}
\end {aligned}$
$
\therefore H=\frac{4 fL \left(\frac{4Q}{\pi D^{2}}\right)^2}{D \times 2 g}+\frac{4 f L \left( \frac{4Q}{\pi d^{2}}\right)^2}{d \times 2 g}
$
or
$$\begin {aligned}
H=\frac{32 f L Q^{2}}{D^{5} \pi^{2} \times g}+\frac{32 f L Q^{2}}{d^{5} \pi^{2} \times g}....(v)
\end{aligned}
$$
From equation (ii),
$$\begin {aligned}\frac{32 f L}{\pi^{2} D^{5} \times g}=\frac{h}{Q_{1}^{2}}\end{aligned}$$
and from equation (ii),
$$
\begin {aligned} \frac{32 f L}{\pi^{2} d^{5} \times g}=\frac{h}{Q_{2}^{2}}
\end{aligned}$$
Substituting these values in equation (v), we have
$\begin {aligned}
H &=Q^{2} \times \frac{h}{Q_{1}^{2}}+Q^{2} \times \frac{h}{Q_{2}^{2}}\\
&=\frac{Q^{2}}{Q_{1}^{2}} h+\frac{Q^{2}}{Q_{2}^{2}} h\\
&=h\left[\frac{Q^{2}}{Q_{1}^{2}}+\frac{Q^{2}}{Q_{2}^{2}}\right] \\
H &=Q^{2} \times \frac{h}{Q_{1}^{2}}+Q^{2} \times \frac{h}{Q_{2}^{2}}\\
\therefore \frac{H}{h} &=\frac{Q^{2}}{Q_{1}^{2}}+\frac{Q^{2}}{Q_{2}^{2}}
\end{aligned}
$
But from equations (iii) and (iv),
$ Q_{1}=0.85 Q$ and $Q_{2}=0.15 Q$
$\begin {aligned}
\therefore \frac{H}{h} &=\frac{Q^{2}}{0.85^{2} Q^{2}}+\frac{Q^{2}}{0.15^{2} Q^{2}} \\
&=\frac{1}{0.85^{2}}+\frac{1}{0.15^{2}}\\
&=1.384+44.444\\
&=45.828
\end {aligned}$