0
585views
Find the resultant and angle of resultant for a structure
1 Answer
0
6views
written 2.7 years ago by | • modified 2.7 years ago |
Solution :
Let , $X_A$ and $Y_A$ be the reactions at the hinge A and $R_B$ at the roller support B
F.B.D of given structure
Applying conditions of equilibrium
$1) \Sigma F_x =0$
$\therefore H_A-30cos40°=0 $
$\therefore H_A=22.98 KN$
$\space $
$2) \Sigma M_A^F =0$
$\therefore 10R_B-(5\times4\times2)-(25\times4)-(8\times 30sin40°)=0 $
$\therefore 10R_B-294.27=0$
$\therefore R_B=29.43KN$
$\space $
$3) \Sigma F_y =0$
$\therefore V_A-(5\times 4)-25-30sin40°+R_B=0$
$\therefore V_A+R_B=64.28 $
$\therefore V_A=43.86 KN $
$\space $
Resultant
$R_A=\sqrt {V_A^2+H_A^2}$
$R_A=\sqrt {34.86^2+22.98^2}$
$R_A=41.75KN$
Angle of resultant
$A=tan^-1(\frac{V_A}{H_A})$
$A=tan^-1(\frac{34.86}{22.98})$
$A=56.61°$
ADD COMMENT
EDIT
Please log in to add an answer.