0
26kviews
Odd parity Hamming code for 1011
1 Answer
written 2.9 years ago by |
Bit Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Resultant Hamming Number | P1 | P2 | d1 | P3 | d2 | d3 | d4 |
Here, d1, d2, d3, and d4 represent the 4-bits of code 1011.
Therefore,
d1 = 1, d2 = 0, d3 = 1, and d4 = 1
The value of P1, P2, and P3 calculated as follows:
$P1 = d1 \oplus d2 \oplus d4$
$P2 = d1 \oplus d4 \oplus d3$
$P3 = d2 \oplus d4 \oplus d3$
Therefore,
$P1 = d1 \oplus d2 \oplus d4 = 1 \oplus 0 \oplus 1 =0$
$P2 = d1 \oplus d4 \oplus d3 = 1 \oplus 1 \oplus 1 = 1$
$P3 = d2 \oplus d4 \oplus d3 = 0 \oplus 1 \oplus 1 = 0$
Now, the final Resultant Hamming Code looks as follows:
P1 | P2 | d1 | P3 | d2 | d3 | d4 |
---|---|---|---|---|---|---|
0 | 1 | 1 | 0 | 0 | 1 | 1 |
Odd parity Hamming code for 1011 is 0110011