0
28kviews
Odd parity Hamming code for 1011
1 Answer
written 3.2 years ago by |
Bit Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Resultant Hamming Number | P1 | P2 | d1 | P3 | d2 | d3 | d4 |
Here, d1, d2, d3, and d4 represent the 4-bits of code 1011.
Therefore,
d1 = 1, d2 = 0, d3 = 1, and d4 = 1
The value of P1, P2, and P3 calculated as follows:
P1=d1⊕d2⊕d4
P2=d1⊕d4⊕d3
P3=d2⊕d4⊕d3
Therefore,
P1=d1⊕d2⊕d4=1⊕0⊕1=0
P2=d1⊕d4⊕d3=1⊕1⊕1=1
P3=d2⊕d4⊕d3=0⊕1⊕1=0
Now, the final Resultant Hamming Code looks as follows:
P1 | P2 | d1 | P3 | d2 | d3 | d4 |
---|---|---|---|---|---|---|
0 | 1 | 1 | 0 | 0 | 1 | 1 |
Odd parity Hamming code for 1011 is 0110011