0
4.1kviews
show that the vector F = (y+z)i +(z+x)j +(x+y)k is solenoidal
1 Answer
written 2.9 years ago by |
Given,
F = (y+z)i + (z+x)j + (x+y)k
To Prove :- F is solenoidal
Proof :-
F is solenoidal if ∇.F = 0
$\therefore\ F = (i\frac{∂}{∂x}\ +\ j\frac{∂}{∂y}\ +\ k\frac{∂}{∂z}). [(y+z)i + (z+x)j + (x+y)k]$
$\implies F =\ \frac{∂}{∂x}(y+z)\ +\ \frac{∂}{∂y}(z+x)\ +\ \frac{∂}{∂z}(x+y)$
$\implies F =\ 0$
$So,\ \therefore\ F\ is\ solenoidal.$