$Stress =$ $ 76.4 N/mm^2 \\ \; \\ $
$Linear $ $strain =$ $ 0.112/300 = 3.73 \\ \; \\ $ x $ 10^{-4} \\ \; \\ $
$ E = stress/strain = $ $ 204.6 kN/mm^2 \\ \; \\ $
$ Lateral $ $strain =$ $ δd/d = 0.00366/30 = 1.22 \\ \; \\ $ x $ 10^{-4} \\ \; \\ $
$But $ $lateral$ $ strain = $ $ (1/m)e = (1/m) (3.73 \\ \; \\ $ x $ 10^{-4})\\ \; \\ $
$ \\ \; \\ \dfrac{1}{m} \; (3.73 *10^{-4}) = 1.22 * 10^{-4}$
$ \\ \; \\
\therefore
\dfrac{1}{m} \;=\; 0.326$
$Again, $ $ Modulus $ $ of$ $ Rigidity $ $ (G) = \dfrac {E} {2(1 + (1/m))} = \dfrac {204.6} {2(1 + 0.326)} = 77.2 KN/mm^2 $
$ Bulk $ $ Modulus$ $ (K) = \dfrac {E} {3(1 - (2/m))} = 196 KN/mm^2 $