written 2.6 years ago by
Chandan15
• 300
|
•
modified 2.6 years ago
|
Poission Ration, $v=\frac{\text { Lateral strain }}{\text { Long. strain }}$
$$
=\frac{0.003 / 25}{0.08 / 200}=\frac{0.003}{25} \times \frac{200}{0.08}
$$
As per hooke's Law
$$
\begin{aligned}
\sigma &=\varepsilon \times E \\
\Rightarrow \quad E &=\frac{(40 \times 103) / \frac{\pi}{4}(25)^{2}}{0.08 / 200} \\
E &=203.7184 \mathrm{~GPa}
\end{aligned}
$$
$$
\begin{aligned}
E &=3 K(1-2v) \\
\Rightarrow K &=\frac{203.718}{3 \times(1-0.6)}=169.765\mathrm{GPa} \\
\end{aligned}
$$
Using Relation
$$
\Rightarrow \quad \begin{aligned}
E &=2G(1+v) \\
G &=\frac{203.718}{2 \times 1.3}=78.354\mathrm{GPa}\\
G &=78.35GPa
\end{aligned}
$$