0
9.6kviews
Change to polar coordinate and evaluate 2a02axx20xx2+y2dydx

Mumbai University > First Year Engineering > sem 2 > Applied Maths 2

Marks : 3

Year : 2014

1 Answer
0
545views

The region of integration is bounded by y=0 and y=2axx2

Y2=2axx2X2+y22ax=0

Adding +a2 both side we get

enter image description here

X22ax+a2+y2=a2(xa)2+y2=a2

The equation is of circle with center at (a,0) and radius is a

The region of integration is also bounded by x=0 to x=2a

If we put x=rcosθ and y=rsinθ

For inner limits

y=2axx2y2=2axx2x2+y2=2axx2=2acosθ

For outer limits

Here the radial strip will vary from 0 \ to \ \dfrac \pi2

dx dy is replaced by r dr dθ

Our integration becomes

=\int\limits_0^\frac{\pi}{2}\int\limits_0^{2a\cos\theta}\frac {r\cos\theta}{\sqrt{r^2}}rdrd\theta \\ =\int\limits_0^\frac{\pi}{2}\int\limits_0^{2a\cos\theta}r\cos\theta \space\space drd\theta \\ =\int\limits_0^\frac {\pi}{2}\Bigg[\frac {r^2}2\cos\theta\Bigg]_0^{2a\cos\theta} \\ =\int\limits_0^\frac {\pi}{2}\Bigg[\frac {4a^2}2\cos^2\theta\times\cos\theta\Bigg]d\theta \\ =2a^2\int\limits_0^\frac {\pi}{2}(1-\sin^2\theta)\times\cos\theta d\theta \\ I=2a^2\Bigg[\int\limits_0^\frac{\pi}{2}\cos\theta \space d\theta- \int\limits^\dfrac \\ \pi2_0\sin^2\theta\cos\theta\space d\theta\Bigg] \\ I_1=\int\limits_0^\frac{\pi}{2}\cos\theta\space d\theta=[\sin\theta]_0^{\pi/2}=1 \\ I_2=\int\limits_0^\frac{\pi}{2}\sin^2\theta\cos\theta\space d\theta

Put \sin\theta=t \\ \cos\theta\space d\theta=dt \\ when \ \theta=0\space \space t=0

\theta=\pi/2 \space \space t=1 \\ =\int\limits_0^1t^2 dt

=\Bigg[\frac{t^3}{3}\Bigg]_0^1 \\ =\frac{1}{3}

Resubstituting value of integration 1 and 2 we get

I=2a^2\Bigg[1-\dfrac 13\Bigg] \\ I=\dfrac {4a^2}3

Please log in to add an answer.