written 8.4 years ago by
teamques10
★ 68k
|
•
modified 8.4 years ago
|
To find the limiting probabilities i.e $\lim_{n→∞}P^n $
Let the limiting probabilities be $π=[π_1 \ π_2 \ π_3 ]$. Then we have $πP=π$ such that $∑π_i=1$
$$
∴[π_1 \ π_2 \ π_3 ]\left[\begin{array} r
0.5 & 0.4 & 0.1 \\
0.3 & 0.4 & 0.3 \\
0.2 & 0.3 & 0.5
\end{array}\right]=[π_1 \ π_2 \ π_3 ]
$$
$$0.5π_1+0.3π_2+0.2π_3=π_1 --- (1)$$
$$0.4π_1+0.4π_2+0.3π_3=π_2 --- (2)$$
$$0.1π_1+0.3π_2+0.5π_3=π_3 --- (3)$$
We know $∑π_i=1$
$$π_1+ π_2+ π_3=1 --- (4)$$
i.e $π_3=1-π_1-π_2$
Substituting the above value in equation (1) and (2)
$0.5π_1+0.3π_2+0.2(1-π_1-π_2)=π_1$
$∴ - 0.7π_1+0.1π_2=-0.2 ---- (5)$
$0.4π_1+0.4π_2+0.3(1-π_1-π_2)=π_2$
$∴ 0.1π_1-0.9π_2=-0.3 --- (6)$
Multiply 9 with equation (5) and adding equation (5) & (6) we get,
$$-6.2π_1=-2.1$$
$$∴ π_1=0.3333$$
$$∴ π_2=0.3703$$
$$∴ π_3=1-π_1-π_2$$
$$π_3=1-0.3333-0.3703$$
$$π_3=0.2964$$
$$∴ π_1=0.3333 \ \ π_2=0.3703 \ \ π_3=0.2964$$