written 8.6 years ago by
teamques10
★ 69k
|
•
modified 8.6 years ago
|
$$b = 230 \ mm,\
D=500 \ mm,\
D_c=50 \ mm \ (assumed),\
l=6m,\
D.L+L.L=35KN/m,\
M_{20} \ \ \& \ \ F_{e415}$$
0.1 |
351.9 |
0.11 |
$f_{sc}=350N/mm^2$ |
0.15 |
342.4 |
$$f_{cc}=0.446f_ck=8.92N/mm^2$$
![enter image description here][1]
$$BM_{\max}=\frac{wl^2}{8}=\frac{35{\times}6^2}{8}=157.5KNm$$
$M_d$ $=1.5 {\times}BM \\
=1.5 {\times}157.5 \\
=236.5KNm$
$M_{u \max}$ $= 0.138 f_ckbd^2 \\
=0.138{\times}20{\times}230{\times}450^2 \\
=128.54 KNm$
$\therefore M_d \gt M_{u \max}$
Design a doubly reinforced section.
$M_{u1}=128.54KNm$
$M_{u2}$ $=M_d-M_{u1} \\
=236.25-128.54 \\
=107.71 KNm.........(1)$
$M_{u1}=T_{u1}{\times}L_{u1}=0.87{\times}f_yAst_1{\times}(d-0.42M_{u \max}) \\
128.54{\times}10^6=[(0.87{\times}415{\times}{\times}Ast_1){\times}(450-0.42{\times}0.48{\times}450)] \\
\therefore Ast_1=991 \ mm^2$
$M_{u2}$ $=T_{u}{\times}L_{a2}..........(2) \\
=0.87{\times}f_yAst_2{\times}(d-d_c) \\
107.71{\times}10^6=[(0.87{\times}415{\times}Ast_2){\times}(450-50)] \\
\therefore Ast_1=745.81 \ mm^2$
$Ast$ $=Ast_1+Ast_2 \\
=1736.81 \ mm^2$
Provide4 - 25 mm steel
$Ast=1964 mm^2$
$M_{u2}$ $=C_{u2}{\times}L_{a2} \\
=(f_{sc}-f_{cc}){\times}Asc{\times}(d-d_c) \\
107.71{\times}10^6=(350-8.92){\times}(450-50) $
$Asc=789.47 \ mm^2$
Provide 4 - 16 mm
$Asc=804 \ mm^2$