$\frac{dc}{d}$ |
0.05 |
0.1 |
0.15 |
0.2 |
$f_{sc}$ |
355.1 |
351.9 |
342.4 |
329.2 |
$b = 300 mm \\
D = 550 mm \\
d = 50 mm \\
To \ find \ M_u =?$
$Ast$ = $6-25mm \\
=6{\times}491=2946 \ mm^2$
$Asc=3-20mm{\phi}=3{\times}3.14=942mm^2 \\
f_ck=20N/mm^2 \\f_y=415N/mm^2 \\
\frac{d_c}{d}=\frac{50}{550}=0.09$
0.05 |
355.1 |
0.072 |
$F_{sc}$ |
0.1 |
351.9 |
$\therefore f_{sc}=353.69N/mm^2 \\
f_{cc}=0.446{\times}20=8.92N/mm^2$
To find Depth of actual N.A
$C_u=T_u \\
(C_{u1}+C_{u2})=(T_{u1}+T_{u2}) \\
(0.36f_ckbX_u)+(f_{sc}+f_{cc})Asc=0.87f_yAst \\
(0.36{\times}20{\times}300{\times}X_u)+(352.5-8.92){\times}942=(0.87{\times}415{\times}2946) \\
\therefore X_u=424.49 \ mm
X_{u \max}=0.48d=0.48{\times}500=264 \ mm^2 \\
\therefore X_u \gt X_{u \max}$
Hence it is an over reinforced section.
Not permitted as per IS:456
Hence restrict $X_u = X_{u \max}$
$M_{u \max}=(C_u{\times}L_{a})+(C_{u2}{\times}L_{a2}) \\
X_{u \max}=[(0.36f_ckbX_{u \max}){\times}(d-0.42X_{u \max})]+\bigg[[(f_{sc}-f_{cc}){\times}Asc]{\times}(d-d_c)\bigg] \\
X_{u \max}=[(0.36{\times}20{\times}300{\times}264){\times}(550-0.42{\times}264)]+\bigg[[(352.5-8.92){\times}942]{\times}(550-50)\bigg] \\
\therefore X_{u \max}=412.24KNm$