written 8.4 years ago by
teamques10
★ 68k
|
•
modified 8.4 years ago
|
$\frac{dc}{d}$ |
$f_{sc}$ |
0.05 |
355.1 |
0.1 |
351.9 |
0.15 |
342.4 |
0.2 |
329.2 |
Data :- $b=250 \ mm \\
D=550 \ mm$
$Ast=3054 \ mm^2 \\
Asc=982 \ mm^2 \\
f_ck=20 N/mm^2 \\
TOR \ steal =F_{e415} \\
i.e f_y=415N/mm^2 \\
Assume \ d_c=40 mm$
Now,
$\frac{d_c}{d}=\frac{40}{550}=0.072$
0.05 |
355.1 |
0.072 |
$f_{sc}$ |
0.1 |
351.9 |
$\therefore f_{sc}=353.69N/mm^2 \\
f_{cc}=0.446{\times}20=8.92N/mm^2$
To find Depth of actual N.A
$C_u=T_u \\
(C_{u1}+C_{u2})=(T_{u1}+T_{u2}) \\
(0.36f_ckbX_u)+(f_{sc}+f_{cc})Asc=0.87f_yAst \\
(0.36{\times}20{\times}250{\times}X_u)+(353.69-8.92){\times}982=(0.87{\times}415{\times}3054) \\
\therefore X_u=424.49 mm \\
X_{u \max}=0.48d=0.48{\times}550=264 mm^2 \\
\therefore X_u \gt X_{u \max}$
Hence it is an over reinforced section.
Not permitted as per IS:456
Hence restrict $X_u= X_{u \max}$
$X_{u \max}=(C_{u1}{\times}L_{a1})+(C_{u2}{\times}L_{a2}) \\
X_{u \max}=[(0.36f_ckb X_{u \max}){\times}(d-0.42 X_{u \max})]+\bigg[[(f_{sc}-f_{cc}){\times}Asc]{\times}(d-d_c)\bigg] \\
X_{u \max}=[(0.36{\times}20{\times}250{\times}264){\times}(550-0.42{\times}264)]+\bigg[[(353.69-8.92){\times}892]{\times}(550-40)\bigg] \\
\therefore X_{u \max}=381.33KNm$