written 8.4 years ago by
teamques10
★ 68k
|
•
modified 8.4 years ago
|
Data:- $b=300 \\
D=450 \ mm[ \because deep] \\
d_c=40 \ mm \\
d=D-d_c=450-40 \\
\hspace{2cm}=410 \ mm$
$f_ck=20N/mm^2,f_y=415N/mm^2 $
Case 1:-
$Ast=6{\times}\frac{\pi}{4}{\times}20^2=6{\times}314=1884mm^2 \\
Asc=4{\times}\frac{\pi}{4}{\times}20^2=4{\times}314=1256mm^2 \\
\frac{d_c}{d}=\frac{40}{410}=0.097$
from table, use interpolation
$0.05\hspace{1cm}355 \\
0.097\hspace{0.8cm}f_{sc}=? \\
0.1\hspace{1.2cm}353 \\
\therefore f_{sc}=353.12N/mm^2 \\
f_{sc}=0.446{\times}20=8.92N/mm^2$
To find Depth of actual N.A
$C_u=T_u \\
(C_{u1}+C_{u2})=(T_{u1}+T_{u2}) \\
(0.36f_ckbX_u)+(f_{sc}+f_{cc})Asc=0.87f_yAst \\
(0.36{\times}20{\times}300{\times}X_u)+(353.12-8.92){\times}1256=(0.87{\times}415{\times}1884) \\
\therefore X_u=114.76 \ mm \\
X_{u \max}=0.48 \ d=0.48{\times}410=196.8 \ mm \\
\therefore X_u \lt X_{u \max}$
Hence it is an under reinforced section.
$M_u=(C_{u1}{\times}L_{a1})+(C_{u2}{\times}L_{a2}) \\
M_u=[(0.36f_ckbX_u){\times}(d-0.42X_u)]+[(f_{sc}-f_{cc}){\times}Asc]{\times}(d-d_c) \\
M_u=[(0.36{\times}20{\times}300{\times}114.76){\times}(410-0.42{\times}114.76)]+\bigg[[(353.12-8.92){\times}1256]{\times}(410-40)\bigg] \\
\therefore M_u=249.64Knm$
Case 2:-
$Ast=6{\times}\frac{\pi}{4}{\times}20^2=6{\times}314=1884mm^2 \\
Asc=5{\times}\frac{\pi}{4}{\times}20^2=5{\times}314=1256mm^2 \\
\therefore f_{sc}=353.12K/mm^2 \\
f_{cc}=8.92N/mm^2 $
To find Depth of actual N.A
$C_u=T_u \\
(C_{u1}+C_{u2})=(T_{u1}+T_{u2}) \\
(0.36f_ckbX_u)+(f_{sc}+f_{cc})Asc=0.87f_yAst \\
(0.36{\times}20{\times}300{\times}X_u)+(353.12-8.92){\times}1570=(0.87{\times}415{\times}1884) \\
\therefore X_u=64.73 \ mm \\
X_{u \max}=0.48 \ d=0.48{\times}410=196.8 \ mm \\
\therefore X_u \lt X_{u \max}$
Hence it is an under reinforced section.
$M_u=(C_{u1}{\times}L_{a1})+(C_{u2}{\times}L_{a2}) \\
M_u=[(0.36f_ckbX_u){\times}(d-0.42X_u)]+[(f_{sc}-f_{cc}){\times}Asc]{\times}(d-d_c) \\
M_u=[(0.36{\times}20{\times}300{\times}64.73){\times}(410-0.42{\times}64.73)]+\bigg[[(353.12-8.92){\times}1570]{\times}(410-40)\bigg] \\
\therefore M_u=253.46Knm$