0
459views
Design 2 bit comparator
1 Answer
0
2views
A1 A0 B1 B0 A>B A=B A
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 1 0 0
0 1 0 0 0 1 0
0 1 0 1 0 0 1
0 1 1 0 0 0 1
0 1 1 1 1 0 0
1 0 0 0 1 0 0
1 0 0 1 0 1 0
1 0 1 0 0 0 1
1 0 1 1 1 0 0
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0

for A=B

$=\bar{A_1}\bar{A_0}\bar{B_1}\bar{B_0}+\bar{A_1}A_0\bar{B_1}B_0+A_1A_0B_1B_0+A_1\bar{A_0}B_1\bar{B_0}$

$=\bar{A_1}\bar{B_1}(A_0 \odot B_0) + A_1B_1(A_0 \odot B_0)$

$=(A_0 \odot B_0) . (A_1 \odot B_1)$

for A>B

$A_1\bar{B_1}+A_0\bar{B_1}\bar{B_0}+A_1A_0\bar{B_0}$

for A < B

$\bar{A_1}B_1+B_1B_0\bar{A_0}+\bar{A_1}\bar{A_0}B_0$

Please log in to add an answer.