0
3.4kviews
Draw Bode plot for the function G(s). Find gain margin, phase margin and comment on stability. \[ G(s)= \frac{2(s+0.25)}{s^2(s+1)(s+0.5)} \]
1 Answer
1
182views

Assuming H(s) = 1

$\therefore{}G\left(s\right)H\left(s\right)=\dfrac{2(s+0.25)}{s^2\ (s+1)(s+0.5)}=\dfrac{2\times{}0.25}{0.5}\ \ \dfrac{1+45}{s^2\left(1+s\right)\left(1+2s\right)}$

$k=\dfrac{2\times{}0.25}{0.5}=1 $

$s^n=s^{-2} $

$\therefore{}G\left(s\right)H\left(s\right)=\dfrac{1+45}{s^2\left(1+s\right)\left(1+2s\right)}\ $

$n=-2 $

Various factor of G(s) are

  1. $ 2 \ poles\ at\ origin, straight\ line\ of\ slope - 40dB/dec\\ \ \ \ \ \ \ passing\ through\ intersection\ of \omega{}=1 \ \&\ 0dB. $
  2. $Simple\ zero\ \left(1+4s\right),\ T_1=4,\ {\omega{}}_{c1}=\dfrac{1}{T_1}=0.25\\ straight\ line\ of\ slope+\dfrac{20dB}{dec}\ \ for\ \omega{}\geq{}0.25$
  3. $simple\ pole\dfrac{1}{2s+1},\ T_2=1,\ {\omega{}}_{c2}\dfrac{1}{\ T_2}=1\\ \therefore{}straight\ line\ of\ slope-\dfrac{20dB}{dec}for\ \omega{}\geq{}1$
  4. $simple\ pole\dfrac{1}{2s+},\ T_3=2,\ {\omega{}}_{c3}=\dfrac{1}{T_3}=0.5\\ \therefore{}straight\ line\ of\ slope-20\dfrac{dB}{dec}for\ \omega{}\geq{}0.5\ $

$k=1,\ \ n=-2$

$\begin{align*} Starting\ point&=20\ log_{10}k-20\left(n\right)\ dB\\[2ex] &=20\log\left(1\right)-20\left(-2\right)\\[2ex] &=40 \ dB\\ \end{align*}$

$=20\log\left(1\right)-20\left(-2\right) $

$=40\ dB $

$\begin{align*}Starting\ slope&=\ \ 20n\dfrac{db}{decode} \\[2ex] &=20\ \left(-2\right)\\[2ex] &=-40\frac{dB}{decode} \end{align*} $

$put\ s=j\omega{} $

$G(jw) =(jw)^{-2}\dfrac{1+4jw}{(1+jw)(1+2jw)} $

ω (jω)-2 tan-1⁡4ω -tan-1⁡ω -tan-12ω Total phase
0∙1 -180° 21.801°n -5.71° -11.309° -175.218°
1 -180° 75.96° -45° -63.43° -212.474°
5 -180° 87.137° -78.69° -84.29° -255.84°
10 -180° 88.567° -84.29° -87.13° -262.85°
50 -180° 89.71° -88.85° -89.42° -268.567°
100 -180° 89.85° -89.42° -89.71° -269.283°
1000 -180° 89.98° -89.94° -89.97° -269
-180° 90 -90° -90° 270
ωgc 1.2 rad/sec -180° 78.231° -50.19° 67.38° -219.343°
ωpc 0.4 rad/sec -180° 57.99° -21.801 -38.65 -182.47°
Please log in to add an answer.