0
3.6kviews
Draw Bode plot for the function G(s). Find gain margin, phase margin and comment on stability.
G(s)=2(s+0.25)s2(s+1)(s+0.5)
1 Answer
written 3.9 years ago by |
Assuming H(s) = 1
∴G(s)H(s)=2(s+0.25)s2 (s+1)(s+0.5)=2×0.250.5 1+45s2(1+s)(1+2s)
k=2×0.250.5=1
sn=s−2
∴G(s)H(s)=1+45s2(1+s)(1+2s)
n=−2
Various factor of G(s) are
k=1, n=−2
Starting point=20 log10k−20(n) dB=20log(1)−20(−2)=40 dB
=20log(1)−20(−2)
=40 dB
Starting slope= 20ndbdecode=20 (−2)=−40dBdecode
put s=jω
G(jw)=(jw)−21+4jw(1+jw)(1+2jw)
ω | (jω)-2 | tan-14ω | -tan-1ω | -tan-12ω | Total phase |
---|---|---|---|---|---|
0∙1 | -180° | 21.801°n | -5.71° | -11.309° | -175.218° |
1 | -180° | 75.96° | -45° | -63.43° | -212.474° |
5 | -180° | 87.137° | -78.69° | -84.29° | -255.84° |
10 | -180° | 88.567° | -84.29° | -87.13° | -262.85° |
50 | -180° | 89.71° | -88.85° | -89.42° | -268.567° |
100 | -180° | 89.85° | -89.42° | -89.71° | -269.283° |
1000 | -180° | 89.98° | -89.94° | -89.97° | -269 |
∞ | -180° | 90 | -90° | -90° | 270 |
ωgc 1.2 rad/sec | -180° | 78.231° | -50.19° | 67.38° | -219.343° |
ωpc 0.4 rad/sec | -180° | 57.99° | -21.801 | -38.65 | -182.47° |