written 3.5 years ago by |
Assuming H(s) = 1
$\therefore{}G\left(s\right)H\left(s\right)=\dfrac{2(s+0.25)}{s^2\ (s+1)(s+0.5)}=\dfrac{2\times{}0.25}{0.5}\ \ \dfrac{1+45}{s^2\left(1+s\right)\left(1+2s\right)}$
$k=\dfrac{2\times{}0.25}{0.5}=1 $
$s^n=s^{-2} $
$\therefore{}G\left(s\right)H\left(s\right)=\dfrac{1+45}{s^2\left(1+s\right)\left(1+2s\right)}\ $
$n=-2 $
Various factor of G(s) are
- $ 2 \ poles\ at\ origin, straight\ line\ of\ slope - 40dB/dec\\ \ \ \ \ \ \ passing\ through\ intersection\ of \omega{}=1 \ \&\ 0dB. $
- $Simple\ zero\ \left(1+4s\right),\ T_1=4,\ {\omega{}}_{c1}=\dfrac{1}{T_1}=0.25\\ straight\ line\ of\ slope+\dfrac{20dB}{dec}\ \ for\ \omega{}\geq{}0.25$
- $simple\ pole\dfrac{1}{2s+1},\ T_2=1,\ {\omega{}}_{c2}\dfrac{1}{\ T_2}=1\\ \therefore{}straight\ line\ of\ slope-\dfrac{20dB}{dec}for\ \omega{}\geq{}1$
- $simple\ pole\dfrac{1}{2s+},\ T_3=2,\ {\omega{}}_{c3}=\dfrac{1}{T_3}=0.5\\ \therefore{}straight\ line\ of\ slope-20\dfrac{dB}{dec}for\ \omega{}\geq{}0.5\ $
$k=1,\ \ n=-2$
$\begin{align*} Starting\ point&=20\ log_{10}k-20\left(n\right)\ dB\\[2ex] &=20\log\left(1\right)-20\left(-2\right)\\[2ex] &=40 \ dB\\ \end{align*}$
$=20\log\left(1\right)-20\left(-2\right) $
$=40\ dB $
$\begin{align*}Starting\ slope&=\ \ 20n\dfrac{db}{decode} \\[2ex] &=20\ \left(-2\right)\\[2ex] &=-40\frac{dB}{decode} \end{align*} $
$put\ s=j\omega{} $
$G(jw) =(jw)^{-2}\dfrac{1+4jw}{(1+jw)(1+2jw)} $
ω | (jω)-2 | tan-14ω | -tan-1ω | -tan-12ω | Total phase |
---|---|---|---|---|---|
0∙1 | -180° | 21.801°n | -5.71° | -11.309° | -175.218° |
1 | -180° | 75.96° | -45° | -63.43° | -212.474° |
5 | -180° | 87.137° | -78.69° | -84.29° | -255.84° |
10 | -180° | 88.567° | -84.29° | -87.13° | -262.85° |
50 | -180° | 89.71° | -88.85° | -89.42° | -268.567° |
100 | -180° | 89.85° | -89.42° | -89.71° | -269.283° |
1000 | -180° | 89.98° | -89.94° | -89.97° | -269 |
∞ | -180° | 90 | -90° | -90° | 270 |
ωgc 1.2 rad/sec | -180° | 78.231° | -50.19° | 67.38° | -219.343° |
ωpc 0.4 rad/sec | -180° | 57.99° | -21.801 | -38.65 | -182.47° |