0
3.6kviews
Draw Bode plot for the function G(s). Find gain margin, phase margin and comment on stability. G(s)=2(s+0.25)s2(s+1)(s+0.5)
1 Answer
1
186views

Assuming H(s) = 1

G(s)H(s)=2(s+0.25)s2 (s+1)(s+0.5)=2×0.250.5  1+45s2(1+s)(1+2s)

k=2×0.250.5=1

sn=s2

G(s)H(s)=1+45s2(1+s)(1+2s) 

n=2

Various factor of G(s) are

  1. 2 poles at origin,straight line of slope40dB/dec      passing through intersection ofω=1 & 0dB.
  2. Simple zero (1+4s), T1=4, ωc1=1T1=0.25straight line of slope+20dBdec  for ω0.25
  3. simple pole12s+1, T2=1, ωc21 T2=1straight line of slope20dBdecfor ω1
  4. simple pole12s+, T3=2, ωc3=1T3=0.5straight line of slope20dBdecfor ω0.5 

k=1,  n=2

Starting point=20 log10k20(n) dB=20log(1)20(2)=40 dB

=20log(1)20(2)

=40 dB

Starting slope=  20ndbdecode=20 (2)=40dBdecode

put s=jω

G(jw)=(jw)21+4jw(1+jw)(1+2jw)

ω (jω)-2 tan-1⁡4ω -tan-1⁡ω -tan-12ω Total phase
0∙1 -180° 21.801°n -5.71° -11.309° -175.218°
1 -180° 75.96° -45° -63.43° -212.474°
5 -180° 87.137° -78.69° -84.29° -255.84°
10 -180° 88.567° -84.29° -87.13° -262.85°
50 -180° 89.71° -88.85° -89.42° -268.567°
100 -180° 89.85° -89.42° -89.71° -269.283°
1000 -180° 89.98° -89.94° -89.97° -269
-180° 90 -90° -90° 270
ωgc 1.2 rad/sec -180° 78.231° -50.19° 67.38° -219.343°
ωpc 0.4 rad/sec -180° 57.99° -21.801 -38.65 -182.47°
Please log in to add an answer.