0
1.8kviews
find initial value of, f(t)= 20-10t-e-25t verify using initial value theorem.
1 Answer
written 3.7 years ago by |
$\displaystyle \lim_{t\rightarrow 0}\ f(t)= \lim_{t \to \infty}[20-10t-e^{-25t}] = 20-1 =19$
$f\left(t\right)=20-10t-e^{-25t} $
Taking Laplace transform
$f\left(s\right)=\dfrac{20}{s}-\dfrac{10}{s^2}-\dfrac{1}{s+25}\\[3ex] s\left(f\right)=20-\dfrac{10}{s}-\dfrac{s}{s+25} $
By initial value theorem
$\displaystyle \lim_{s\rightarrow \infty}\ f(t)= \lim_{s \to \infty}\Bigg[20-\dfrac{10}{s}-\dfrac{s}{s+25}\Bigg] = 20-1 =19$