written 3.5 years ago by |
Answer: Applying KVL to mesh 1 ,
$V_1=3I_1+2I_2-I_3$.......................(1)
Applying KVL to mesh 2 ,
$V_2=2I_1+6I_2+4I_3$......................(2)
Applying KVL to mesh 3 ,
$13I_3-I_1+4I_2=0$
$\therefore I_3=\dfrac{1}{13}I_1-\dfrac{4}{13}I_2$......................(3)
Substituting the equation (3) in (1),
$V_1=3I_1+2I_2-\dfrac{1}{3}I_1+\dfrac{4}{13}I_2$
$\therefore V_1=\dfrac{38}{13}I_1+\dfrac{30}{13}I_2$......................(4)
Substituting the equation (3) in (2),
$V_2=2I_1+6I_2+4(\dfrac{1}{13}I_1-\dfrac{4}{13}I_2)$
$\therefore V_2=\dfrac{30}{13}I_1+\dfrac{62}{13}I_2$.......................(5)
The T network consists of three impedances .
Applying KVL to mesh 1,
$V_1=(Z_ A+Z_C)I_1+Z_CI_2$..............(6)
Applying KVL to mesh 2 ,
$V_2=Z_CI_1+(Z_B+Z_C)I_2$...............(7)
Comparing equations (4) and (5) with (6) and (7),
$Z_A+Z_C=\dfrac{38}{13}$
$Z_C=\dfrac{30}{13}$
$Z_B+Z_C=\dfrac{62}{13}$
Solving the above equations,
$Z_A=\dfrac{8}{13}\Omega$
$Z_B=\dfrac{32}{13}\Omega$
$Z_C=\dfrac{30}{13}\Omega$