written 3.5 years ago by |
Given $I(s)=\dfrac{2s}{(s+1)(s+2)}$
To get poles,equate denominator of I(s) to zero
(s+1)(s+2)=0
poles are s1= -1 and s2 = -2
To get zero, equate numerator of I(s) to zero.
2s=0
zero is s=0
Pole - zero plot
To obtain i(t), need to apply inverse laplase to I(s)
Now Apply Inverse Laplace to I(s)
$L^{-1}(I(s))=L^{-1}(\dfrac{2s}{(s+1)(s+2)})$
we have a inverse laplace formula i.e. $L^{-1}(\dfrac{1}{s+a})=e^{-at}$
now apply partial fractions to $\dfrac{2s}{(s+1)(s+2)}$
Partial Factions:
$\dfrac{2s}{(s+1)(s+2)} = \dfrac{A}{S+1}+\dfrac{B}{s+2}$
$2s=A(s+2)+B(s+1)....................(1)$
take s= -1 in equation (1) to get value of A
2(-1)=A(-1+2)+B(-1+1)
A=-2
take s= -2 in equation (1) to get value of B
2(-2)=A(-2+2)+B(-2+1)
B=4
$\dfrac{2s}{(s+1)(s+2)} = \dfrac{-2}{S+1}+\dfrac{4}{s+2}$
Now apply inverse laplace
$L^{-1}(I(s))=L^{-1}(\dfrac{2s}{(s+1)(s+2)})=L^{-1}\dfrac{-2}{S+1}+L^{-1}\dfrac{4}{s+2}$
by using this formula $L^{-1}(\dfrac{1}{s+a})=e^{-at}$ we get
$i(t)=-2e^{-t}+4e^{-2t}$