written 3.5 years ago by |
Solution:
$Here \ {\ f}_n(x) = sin \dfrac{(2n+1)\pi{}x}{2l} \\ where \ n = 0,1,2,3,...$
${\ f}_m(x) = sin \dfrac{(2m+1)\pi{}x}{2l}$
$\therefore \int_0^l\ f_m\left(x\right).{\ f}_n(x)dx = \int_0^lsin\ \frac{(2m+1)\pi{}x}{2l}.\ sin\ \frac{(2n+1)\pi{}x}{2l}dx$
$-\dfrac{\ 1}{2}\int_0^l\left[cos\left(\frac{2m+2n+2}{2l}\right)\pi{}x-cos\left(\frac{2m-2n}{2l}\right)\pi{}x\right]dx$
$-\frac{\ 1}{2}\int_0^l\left[cos\left(\frac{m+n+1}{l}\right)\pi{}x-cos\left(\frac{m-n}{l}\right)\pi{}x\right]dx$
$-\dfrac{\ 1}{2}{\left[\dfrac{sin(\dfrac{m+n+1}{l})\pi{}x}{(\dfrac{m+n+1)\pi{}}{l}}-\dfrac{sin(\dfrac{m-n}{l})\pi{}x}{(\dfrac{m-n)\pi{}}{l}}\right]}_0^l$
$=-\dfrac{\ 1}{2}\left[\dfrac{sin(m+n+1)\pi{}}{\frac{(m+n+1)\pi{}}{l}}-\dfrac{sin(m-n)\pi{}}{\frac{(m-n)\pi{}}{l}}\right]$
$When \ m \not=n,\\ \int_{-\pi{}}^{\pi{}}\ f_m\left(x\right).{\ f}_n(x)dx=0 \ ...Since \ m \ and \ n \ are \ integers$
$When \ m = n, \\ \int_0^l\ f_n\left(x\right).{\ f}_n\left(x\right)dx=\ \int_0^l\ {sin}^2\frac{(2n+1)\pi{}x}{2l}dx$
$\displaystyle \int_0^l\ {\left[f_n\left(x\right)\right]}^2dx=\ \int_0^l\ \frac{1-cos2\left\{\frac{(2n+1)}{2l}\right\}\pi{}x}{2}dx$
$=\dfrac{\ 1}{2}{\left[x-\dfrac{sin\left\{\frac{(2n+1)}{l}\right\}\pi{}x}{\frac{(2n+1)}{\pi{}l}}\right]}_0^l$
$=\dfrac{\ 1}{2}\ \left[l-0-0+0\right] \\ \dfrac{\ l}{2}\ \not=0 \\ $
Thus, the given set of functions is orthogonal over (0, l)