0
625views
Show that the set of functions  (πx2l),sin(3πx2l), sin(5πx2l),.....
is orthogonal over (0,l).
1 Answer
0
18views

Solution:

Here  fn(x)=sin(2n+1)πx2lwhere n=0,1,2,3,...

 fm(x)=sin(2m+1)πx2l

l0 fm(x). fn(x)dx=l0sin (2m+1)πx2l. sin (2n+1)πx2ldx

 12l0[cos(2m+2n+22l)πxcos(2m2n2l)πx]dx

 12l0[cos(m+n+1l)πxcos(mnl)πx]dx

 12[sin(m+n+1l)πx(m+n+1)πlsin(mnl)πx(mn)πl]l0

= 12[sin(m+n+1)π(m+n+1)πlsin(mn)π(mn)πl]

When mn,ππ fm(x). fn(x)dx=0 ...Since m and n are integers

When m=n,l0 fn(x). fn(x)dx= l0 sin2(2n+1)πx2ldx

l0 [fn(x)]2dx= l0 1cos2{(2n+1)2l}πx2dx

= 12[xsin{(2n+1)l}πx(2n+1)πl]l0

= 12 [l00+0] l2 0

Thus, the given set of functions is orthogonal over (0, l)

Please log in to add an answer.