0
625views
Show that the set of functions (πx2l),sin(3πx2l), sin(5πx2l),.....
is orthogonal over (0,l).
1 Answer
written 3.9 years ago by |
Solution:
Here fn(x)=sin(2n+1)πx2lwhere n=0,1,2,3,...
fm(x)=sin(2m+1)πx2l
∴∫l0 fm(x). fn(x)dx=∫l0sin (2m+1)πx2l. sin (2n+1)πx2ldx
− 12∫l0[cos(2m+2n+22l)πx−cos(2m−2n2l)πx]dx
− 12∫l0[cos(m+n+1l)πx−cos(m−nl)πx]dx
− 12[sin(m+n+1l)πx(m+n+1)πl−sin(m−nl)πx(m−n)πl]l0
=− 12[sin(m+n+1)π(m+n+1)πl−sin(m−n)π(m−n)πl]
When m≠n,∫π−π fm(x). fn(x)dx=0 ...Since m and n are integers
When m=n,∫l0 fn(x). fn(x)dx= ∫l0 sin2(2n+1)πx2ldx
∫l0 [fn(x)]2dx= ∫l0 1−cos2{(2n+1)2l}πx2dx
= 12[x−sin{(2n+1)l}πx(2n+1)πl]l0
= 12 [l−0−0+0] l2 ≠0
Thus, the given set of functions is orthogonal over (0, l)