0
2.1kviews
Find the orthogonal trajectory of the curves 3x2y+2x3-y3-2y2 = ?, where &lpha is a constant
1 Answer
written 3.9 years ago by |
3x2y+2x2−y3−2y2=αDifferentiating this w.r.t x3(2xy+x2y′)+4x−3y2y′−4y y′=0To find the orthogonal trajectory, replacing y′by−1y′3(2xy−x2y′)+4x+3y2y′+4yy′=0
Multiplying throughout by y'3(2xyy′−x2)+4xy′+3y2+4y=0 6xyy′+4xy′−3x2+3y2+4y=0(6xy+4x) dydx −3x2+3y2+4y=0(6xy+4x) dy+(−3x2+3y2+4y)dx=0
$\textit{Hence the Differential equation is …