0
763views
Find the value of 'p' sucj that the function f(z) expressed in polar co-ordinates as f(z) = r3 cos p&theta
1 Answer
0
75views

Answer:Given function f(z)=r3cospθ+irpsin3θ. Comparing it with the standard complex function f(z)=u+iv.

Here, u=r3cospθ,v=rpsin3θ.

If the function is analytic, it should satisfy Cauchy-Reimann equation, i.e.,

 ur=1rvθ.................(1)

uθ=rvr..................(2)

Now from (1), 3r2cospθ=3rrpcos3θ or, 3r2cospθ=3rp1cos3θp=3(r2=rp1p1=2p=3,cospθ=cos3θp=3)

From (2), r3psinpθ=rprp1sin3θ or r2sinpθ=rp1sin3θ p=3(r2=rp1p=3,sinpθ=sin3θp=3)

Thus p=3.                                  Answer.

Please log in to add an answer.