written 3.5 years ago by |
Solution: It is a common base configuration. Substitute the approximate hybrid equation model
$Input \ Resistance =\left(hib \ H_2+\dfrac{600}{1000}\Omega\right)\\ hib=\dfrac{hie}{1+hfe}=(\textrm{Value of hie is not given hfe=100})\\ Output \ resistance =\left(\dfrac1{hob}||2.7||1k\right)$
(hob is not given)
$\textrm{Voltain gain } A_V=\dfrac{-hfeR_L'}{hie}\\ gm=\left(\dfrac B{r\pi}\right)=\left(\dfrac B{hie}\right)=\left(\dfrac{100}{hie}\right)$
Alternate way: (Hybrid-π-Model)
gm=(IC/VT)
To determine IC, DC eq. ckt
$\rightarrow 10-2.7I_C-V_{CE}-2I_C-10v=0\\ V_{CE}=20-4.7I_C$
$\rightarrow+100I_B+V_{BE}-2I_E-10=0\\ 100I_B+0.7-2\times100 I_B-10=0\\ I_B=\left(\dfrac{9.3}{100}\right)=0.093mAmp\\ I_C=BI_B=\dfrac{9.3}{100}\times100=9.3m \ amp\\ V_{CE}=20-37.2=-17.2V $
-ve Sign indicate that polarity should be opposite.
$\therefore gm=\dfrac{I_C}{V_T}=\left(\dfrac{9.3mA}{26mV}\times10^3\right)=\dfrac{9.3}{26}\times10^3=0.357$