written 8.6 years ago by | • modified 8.6 years ago |
Mumbai University > CIVIL > Sem 7 > Limit State Method
Marks: 10 M
written 8.6 years ago by | • modified 8.6 years ago |
Mumbai University > CIVIL > Sem 7 > Limit State Method
Marks: 10 M
written 8.6 years ago by | • modified 8.6 years ago |
Steps:
To find, the depth of Actual N.A.
$C_u=T_u \\ 0.36f_ckbX_u=0.87{\times}f_y{\times}Ast \\ \therefore X_u=\frac{0.87f_yAst}{0.36f_ckb}$
$X_{umax}$ = $0.53 d⟹For \ F_{e250} \\ 0.48 d⟹For \ F_{e415} \\ 0.46d⟹For \ F_{e500}$
When $X_u \lt X_{umax}⟹$ Under reinforced
use
$M_u=T_u{\times}L_a \\ M_u=0.87f_yAst{\times}(d-0.42X_u) \\ OR \\ M_u=C_u{\times}L_a \\ M_u=0.36{\times}f_ck{\times}b{\times}X_u{\times}(d- X_u)$
When $X_u \gt X_{umax}⟹$ over reinforced
It is not permitted as per IS:456
Restrict X $X_u=X_{umax}$
use
$M_{umax}=C_u{\times}L_c \\ M_{umax}=0.36{\times}f_ck{\times}b{\times}X_{umax}{\times}(d-0.42X_{umax})$
Important note
Steal grade | $X_{umax}$ | $M_{umax}$ | |
---|---|---|---|
1. $F_{e250}$ | $0.53 d$ | $0.149f_ckbd^2$ | |
2. $F_{e415}$ | $0.48 d$ | $0.138 f_ckbd^2$ | |
3. $F_{e500}$ | $0.46 d$ | $0.133f_ckbd^2$ |
Step
Data:- $B.M., f_ck , f_y$
Find: Dimension, Ast=?
Steps:-
1) $M_u/M_{umax}=1.5{\times}B.M \\ Assume \ \ b = 230 \ \ mm \ \ to \ \ 300 mm \\ M_{umax}=.............fckbd^2 \ \ (depend \ \ on \ \ steel \ \ grade) \\ d=?$
2) $C_u=T_u \\ \ \ \ \ 0.36f_ckbX_u=0.87{\times}f_y{\times}Ast \\ \ \ \ \ X_u=?$
3) $Ast=\Bigg(\frac{0.5f_ckbd}{f_y}\Bigg){\times}\Bigg(\sqrt{1-\frac{4.6M_u}{f_ckbd^2}}\Bigg) \\ Ast=?$