$S=20\pi{}\ t^2\ cm
$
$v=\dfrac{dS}{dt}=40\pi{}\ t\ cm/sec
$
$a_t=\dfrac{dv}{dt}=40\pi{}\ cm/{sec}^2
$
$Radius=20\ cm\ \therefore{}for\ one\ revolution;S=2\pi{}(20)
$
$\therefore{}\
2\pi{}\left(20\right)=20\pi{}\ t^2
%eq1$
$\therefore{}\ t^2=2\ \&\ t=\sqrt{2}\ second.
$
Velocity at $t=\sqrt{2}
$ is given by;
$v=(40\pi{})\sqrt{2}\ cm/sec
$
Normal Acceleration:
$a_n=\dfrac{v^2}{\rho{}}=\dfrac{{40}^2\times{}{\pi{}}^2\times{}2}{20}
$
$\therefore{}\ a_n=1579.14\ cm/{sec}^2
$
Tangential Acceleration:
$a_t=40\ \pi{}
$
$\therefore{}\ a_n=125.66\ cm/sec
$