- $(Given)...Velocity\ at\ B=2500 mm/sec\ i.e.\ V_B= 2500 mm/sec\ $
$= 2.5\ m/s$
$AB = 400\ mm = 0.4 \ m,\ OA= 200\ mm = 0.2m.$
- $Let\ \omega_{AB}\ and\ \omega_{OA}\ be\ the\ angular\ velocities\ of\ links\ AB\ and\ OA\ respectively.$
- $Let\ 'I'\ be\ the\ instantaneous\ center\ of\ rotation\ of\ link\ AB. $
$\angle\ CBV_A=30^\circ$
$\angle\ CBI=90^\circ - 30^\circ = 60^\circ$
$\angle\ ABI=90^\circ - 60^\circ = 30^\circ$
$IA= \dfrac {1} {\sqrt3} \times AB $
$=\dfrac {1} {\sqrt3} \times0.4 = 0.2309\ m; $
$AB= \dfrac {\sqrt3}{2} \times IB $
$IB= \dfrac {2} {\sqrt3} \times AB $
$IB= \dfrac {2} {\sqrt3} \times 0.4 = 0.4619\ m$
- $Hence, Angular\ velocity\ of\ the\ link\ AB= \omega_{AB} = \dfrac {V_B} r$
$=\dfrac {V_B} {IB} = \dfrac {2.5} {0.4619}= 5.4124\ rad/s$
- $Hence, Instantaneous\ velocity\ of\ A= r.\omega_{AB} = IA \times \omega_{AB} $
$= 0.2309 \times 5.4124 = 1.25 m\ /s$
- $Hence, Angular\ velocity\ of\ the\ link\ OA= \omega_{OA} = \dfrac {V_A} r = \dfrac {V_A} {OA}$
$ =\dfrac {1.25} {0.2} = 6.25\ rad/s$
- $Angular\ velocity\ of\ the\ link\ OA= 6.25\ rad/s$