0
1.4kviews
For the link and slider mechanism shown in figure, locate the instantaneous centre of rotation of link AB. Also find the angular velocity of link 'OA'. Take velocity of slider at B=2500 mm/sec.
1 Answer
1
69views

  • $(Given)...Velocity\ at\ B=2500 mm/sec\ i.e.\ V_B= 2500 mm/sec\ $

$= 2.5\ m/s$

$AB = 400\ mm = 0.4 \ m,\ OA= 200\ mm = 0.2m.$

  • $Let\ \omega_{AB}\ and\ \omega_{OA}\ be\ the\ angular\ velocities\ of\ links\ AB\ and\ OA\ respectively.$
  • $Let\ 'I'\ be\ the\ instantaneous\ center\ of\ rotation\ of\ link\ AB. $

$\angle\ CBV_A=30^\circ$

$\angle\ CBI=90^\circ - 30^\circ = 60^\circ$

$\angle\ ABI=90^\circ - 60^\circ = 30^\circ$

  • $Hence, AB= \sqrt3 IA$

$IA= \dfrac {1} {\sqrt3} \times AB $

$=\dfrac {1} {\sqrt3} \times0.4 = 0.2309\ m; $

$AB= \dfrac {\sqrt3}{2} \times IB $

$IB= \dfrac {2} {\sqrt3} \times AB $

$IB= \dfrac {2} {\sqrt3} \times 0.4 = 0.4619\ m$

 

  • $Hence, Angular\ velocity\ of\ the\ link\ AB= \omega_{AB} = \dfrac {V_B} r$

$=\dfrac {V_B} {IB} = \dfrac {2.5} {0.4619}= 5.4124\ rad/s$

  • $Hence, Instantaneous\ velocity\ of\ A= r.\omega_{AB} = IA \times \omega_{AB} $

$= 0.2309 \times 5.4124 = 1.25 m\ /s$

  • $Hence, Angular\ velocity\ of\ the\ link\ OA= \omega_{OA} = \dfrac {V_A} r = \dfrac {V_A} {OA}$

$ =\dfrac {1.25} {0.2} = 6.25\ rad/s$

  • $Angular\ velocity\ of\ the\ link\ OA= 6.25\ rad/s$
Please log in to add an answer.