0
3.5kviews
State and prove work Energy principle.
1 Answer
written 3.5 years ago by |
Statement of Work-energy principle:
$\sum Work\ done = Change\ in\ Kinetic\ Energy$.
Proof:
$Hence, F\cos \theta=m \dfrac {\mathrm dv} {\mathrm dt}$
$Hence, F\cos \theta=m \dfrac {\mathrm dv} {\mathrm dx} \times \dfrac {\mathrm dx} {\mathrm dt}$
$Thus,\ F\cos \theta=m.\dfrac {\mathrm dv} {\mathrm dx} \times v$
$Hence,\ F\cos \theta\ dx=m v\ {\mathrm dv} $
$\int\limits_0^x F\cos\theta\ dx = \int\limits_u^v mv\ \mathrm dv$
$ F\ \cos\theta \bigg [x \bigg]_0^x = m \bigg [\dfrac {v^2}2 \bigg]_u^v $
$ F\ \cos\theta \ [x-0] = \dfrac {1}2m [v^2-u^2]$
$ F\ \cos\theta. \ x = \dfrac {1}2m v^2 -\dfrac {1}2mu^2$