0
1.7kviews
Four concurrent forces act at a point as shown. Find their resultant.
1 Answer
written 3.5 years ago by |
$Let\ '\theta'\ be\ the\ inclination\ of\ 40N\ force.$
$From\ fig,\sin \theta= \dfrac {3}{5}=0.6, \cos \theta=\dfrac {4}{5}=0.8$
$Let\ the\ resultant\ be\ 'R' acting\ at\ horizontal\ with\ an\ angle\ '\theta'$
$Along\ the\ X-axis\ we\ resolve\ the\ forces.$
$R_x = 15 + 40\cos\theta - 25\sin50$
$=15 + 40 \times 0.8 - 25 \times 0.7660$
$= 27.8489 \rightarrow\ (1)$
$R_y = 15 + 40\sin\theta + 25\cos50$
$=15 + 40 \times 0.6 + 25 \times 0.6428$
$= 90.0697\rightarrow\ (2)$
$ = \sqrt{(27.8489)^2+(90.0697)^2}$
$= 94.2768 N$
$\theta = tan^{-1}\left( \dfrac {R_y} {R_x}\right)$
$= tan^{-1}\left( \dfrac {90.0697} {27.8489}\right)$
$= 72.8188\ ^\circ$