$\overline F_{AB}=100\ \dfrac{\overline{AB}}
{|\overline{AB}|}=\dfrac{100(-2\hat{a}
+3\hat j+5\hat k)}{\sqrt{2^2+3^2+5^2}}
=-32.47\ \hat i+48.7\ \hat j+81.17\ \hat k\ (N)$
$\overline F_{AC}=150\ \dfrac{\overline{AC}}
{|\overline{AC}|}=\dfrac{150(2\hat{i}
+5\hat j+7\hat k)}{\sqrt{2^2+5^2+7^2}}
=33.98\ \hat i+84.94\ \hat j+118.9\ \hat k\ (N)$
$\overline F_{AD}=200\ \dfrac{\overline{AD}}
{|\overline{AD}|}=\dfrac{200(-\hat{i}
+4\hat j)}{\sqrt{1^2+4^2}}
=-48.5\ \hat i+194\ \hat j\ \ (N)$
Resultant Force
$\overline R=\overline F_{AB}+\overline F_{AC}+\overline F_{AD}=-47\hat i+327.64\ \hat j+200.07\ \hat k$