0
2.0kviews
Find Centroid of shaded area with reference to X and Y axes.
1 Answer
written 3.6 years ago by |
Part | $A_i \ \ \ (cm^2)$ | $x_i\ \ \ (cm)$ | $y_i \ \ \ (cm)$ | $A_ix_i\ \ (cm^3)$ | $A_iy_i\ \ (cm^3)$ |
---|---|---|---|---|---|
Square ABCD | $20\times 20=400\ \ cm^2$ | $=\dfrac{20}{2}=10\ cm$ | $=\dfrac{20}{2}=10\ cm$ | 4000 | 4000 |
Quarter Circle | $-100\pi $ | $\dfrac{4\times R}{3\pi }=\dfrac{4\times20}{3\pi }=8.488cm$ | $R-\dfrac{4\times R}{3\pi }=20-\dfrac{4\times 20}{3\pi }=11.512 \ cm$ | -2666.58 | -3616.60 |
Semi Circle | $50\pi $ | $\dfrac{4\times R}{3\pi }=\dfrac{4\times 10}{3\pi }=4.244\ cm$ | $\dfrac{20}{2}=10\ cm$ | 666.65 | 1570.796 |
$\sum A_i=242.92\ cm^2$ | $\sum A_ix_i=2000.07$ | $\sum A_iy_i=1954.196$ |
Centrod position w.r.t point D
$\bar x=\dfrac{\sum A_ix_i}{\sum A_i}=\dfrac{2000.07}{242.92}=8.23\ cm$
$\bar y=\dfrac{\sum A_iy_i}{\sum A_i}=\dfrac{1954.196}{242.92}=8.044\ cm$