0
2.0kviews
Find Centroid of shaded area with reference to X and Y axes.
1 Answer
0
17views

 

Part $A_i \ \ \ (cm^2)$ $x_i\ \ \ (cm)$ $y_i \ \ \ (cm)$ $A_ix_i\ \ (cm^3)$ $A_iy_i\ \ (cm^3)$
Square ABCD $20\times 20=400\ \ cm^2$ $=\dfrac{20}{2}=10\ cm$ $=\dfrac{20}{2}=10\ cm$ 4000 4000
Quarter Circle $-100\pi $ $\dfrac{4\times R}{3\pi }=\dfrac{4\times20}{3\pi }=8.488cm$ $R-\dfrac{4\times R}{3\pi }=20-\dfrac{4\times 20}{3\pi }=11.512 \ cm$ -2666.58 -3616.60
Semi Circle $50\pi $ $\dfrac{4\times R}{3\pi }=\dfrac{4\times 10}{3\pi }=4.244\ cm$ $\dfrac{20}{2}=10\ cm$ 666.65 1570.796
$\sum A_i=242.92\ cm^2$ $\sum A_ix_i=2000.07$ $\sum A_iy_i=1954.196$

 

Centrod position w.r.t point D

$\bar x=\dfrac{\sum A_ix_i}{\sum A_i}=\dfrac{2000.07}{242.92}=8.23\ cm$

$\bar y=\dfrac{\sum A_iy_i}{\sum A_i}=\dfrac{1954.196}{242.92}=8.044\ cm$

Please log in to add an answer.