0
1.2kviews
Derive the relationship between Phase and Line voltages and currents for a star connected balanced load across a three-phase balanced system.
1 Answer
0
32views

$V_{R}=V_B =V_Y=V_{ph}$ $V_{L}=V_{RB}=V_{BY}=V_{RY}$ ![]() $\begin{align*} \therefore V_L &=\bar{V_R} - \bar{V_B}\ &=V_R+j0-V_B\cos 60 -jV_B \sin 60\ &= V_{ph} -V_{ph}\cos 60 -jV_{ph} \sin 60\ &=V_{ph}(1-\cos 60)-jV_{ph}\sin 60\ &=V_{ph}\sqrt{(1-\cos 60)^2 +(\sin 60)^2} =1.732V_{ph} =\sqrt{3}V_{ph}

\end{align*} $

Please log in to add an answer.