0
385views
Derive the condition for maximum power transfer through the network.
1 Answer
written 3.5 years ago by |
$P_2= \dfrac{V^2 _{th}.R_2}{(R_{th}+R_2)^2}$ $\Rightarrow$ At $P_{max}$, $\frac{dP}{dR_2} = 0$
$\therefore V_{th}^2[(R_{th}+R_L)^2-2R_L(R_{th}+R_2)]=0\\ \therefore R_{th}^2 +R_{L}^2+2R_{th}.R_L-2R_{L}.R_{th}-2R_{L}^2=0$
$\therefore R_{th}^2 = R_{L}^2\Rightarrow R_{th} =R_{L}$ ..... Condition for $P_{max}$