written 8.4 years ago by | • modified 4.0 years ago |
Use whitney’s method. Use $M_{20}/F_{e415}$.
written 8.4 years ago by | • modified 4.0 years ago |
Use whitney’s method. Use $M_{20}/F_{e415}$.
written 8.4 years ago by | • modified 8.4 years ago |
Given: b=230 mm
d = 600mm.
$$σ_{cu}=f_ck=20N/mm^2 \\ σ_{sy}=f_y=415 N/mm^2$$
$Ast = 3-16 mm∅ = 3×\frac{Π}{4}×16^2=603 mm^2$
To find
$1) M.R.= ? \\ 2) W_{udl}= ?$
Case 1:
To find depth of actual N.A.
$$C_u=T_u \\ \frac{2}{3} f_{ck} ba= f_y Ast \\ \frac{2}{3}×20×230×a= 415×603$$
a=84.44mm
$$a_{max}=\frac{d}{2}=\frac{550}{2}=275mm$$
Here $a \lt a_{max}→$ Under reinforced section
$$M_u= T_u×l_a=f_y×Ast×\Big(d-\frac{a}{2}\Big) \\ M_u=415×603×\Big(550-\frac{81.6}{2}\Big) \\ M_u=127.42 kNm$$
Case 2:
$$M_u=127.42 kNm \\ M_u=\frac{w_d l^2}{8} \\ 127.42=\frac{w_d ×5^2}{8} \\ w_d=40.77 \\ w_{self}=0.23×0.6×25=3.45kN.m \\ w_d=1.5 D.L+(2.2 ×L.L) \\ 40.77=1.5 3.45+(2.2 ×L.L) \\ L.L=1.61 kN/m$$