0
1.4kviews
R.C beam $230mm{\times}600mm$ is reinforces with 3 bars of 16 mm on tension side with an effective covers of 50mm. Determine the safe load the beam can carry if simply supported on span of 5m.

Use whitney’s method. Use $M_{20}/F_{e415}$.

1 Answer
0
3views

Given: b=230 mm

d = 600mm.

$$σ_{cu}=f_ck=20N/mm^2 \\ σ_{sy}=f_y=415 N/mm^2$$

$Ast = 3-16 mm∅ = 3×\frac{Π}{4}×16^2=603 mm^2$

To find

$1) M.R.= ? \\ 2) W_{udl}= ?$

Case 1:

To find depth of actual N.A.

$$C_u=T_u \\ \frac{2}{3} f_{ck} ba= f_y Ast \\ \frac{2}{3}×20×230×a= 415×603$$

a=84.44mm

$$a_{max}=\frac{d}{2}=\frac{550}{2}=275mm$$

Here $a \lt a_{max}→$ Under reinforced section

$$M_u= T_u×l_a=f_y×Ast×\Big(d-\frac{a}{2}\Big) \\ M_u=415×603×\Big(550-\frac{81.6}{2}\Big) \\ M_u=127.42 kNm$$

Case 2:

$$M_u=127.42 kNm \\ M_u=\frac{w_d l^2}{8} \\ 127.42=\frac{w_d ×5^2}{8} \\ w_d=40.77 \\ w_{self}=0.23×0.6×25=3.45kN.m \\ w_d=1.5 D.L+(2.2 ×L.L) \\ 40.77=1.5 3.45+(2.2 ×L.L) \\ L.L=1.61 kN/m$$

Please log in to add an answer.