Given –
$\lambda =1.549 \times 10^{-10}$
$d=4.255 \times 10^{-10} $
To find – $\theta$, highest order
Solution –
For smallest glancing angle,
For $n=1$,
According to Bragg’s $n\lambda=2d\sin\theta$
$\sin\theta =\dfrac{n\lambda }{2d}$
$=\dfrac {(1)\times 1.549 \times 10^{-10}}{2\times 4.255 \times 10^{-10}}$
$\theta =10.49^{\circ}$
For highest order, $\sin\theta =1$
According to Bragg’s law,
$\therefore n\lambda=2d \sin\theta$
$n=\dfrac {2d(1)}{\lambda}$
$=\dfrac {2\times 4.255 \times 10^{-10}}{1.549 \times 10^{-10}}=5.49$
$n\approx 5$
∴ highest order of reflection that can be observed is 5.