0
2.6kviews
Calculate Bragg angle if (200) planes of a BCC crystal with lattice parameter 2.814Å give second order reflection with X-rays of wavelength 0.71Å.
1 Answer
written 3.5 years ago by |
For plane (200):
$d= \dfrac{a}{\sqrt {h^2+k^2+l^2}}$
$d=\dfrac{2.814 \times 10^{-10}}{\sqrt {2^2+0+0}}$
$\therefore d=\dfrac{2.814 \times 10^{-10}}{ 2}$
$\therefore d=1.407 \times 10^{-10}\ m $
Using Bragg's law
$n\lambda=2d \sin\theta$
$ \sin\theta = \dfrac{n\lambda}{ 2d}$
$ \sin\theta = \dfrac{2 \times0.71 \times 10^{-10} }{ 2\times1.407\times 10^{-10}}$
$ \sin\theta =0.5046$
$\theta=\sin^{-1}{0.5046}$
$\therefore \theta=30.31^{\circ}$
∴ Bragg's angle is 30.30°