0
2.6kviews
Calculate Bragg angle if (200) planes of a BCC crystal with lattice parameter 2.814Å give second order reflection with X-rays of wavelength 0.71Å.
1 Answer
0
368views

For plane (200):

$d= \dfrac{a}{\sqrt {h^2+k^2+l^2}}$

$d=\dfrac{2.814 \times 10^{-10}}{\sqrt {2^2+0+0}}$

$\therefore d=\dfrac{2.814 \times 10^{-10}}{ 2}$

$\therefore d=1.407 \times 10^{-10}\ m $

 

Using Bragg's law

$n\lambda=2d \sin\theta$

$ \sin\theta = \dfrac{n\lambda}{ 2d}$

$ \sin\theta = \dfrac{2 \times0.71 \times 10^{-10} }{ 2\times1.407\times 10^{-10}}$

$ \sin\theta =0.5046$

$\theta=\sin^{-1}{0.5046}$

$\therefore \theta=30.31^{\circ}$

 

∴ Bragg's angle is 30.30°

Please log in to add an answer.