0
10kviews
Fermi Energy for Silver is 5.5 eV. Find out the energy for which the probability of occupancy at 300K is 0.9.
1 Answer
written 3.5 years ago by |
Given data:
$f(E)=0.9$
To find: E = ?
Solution:
$kT=\dfrac{1.38 \times10^{-23} \times300 }{{1.6 \times10^{-19}}}$
$\therefore kT=0.0259$
$f(E)=\dfrac { 1}{ 1+e^\frac{(E-E_f)}{kT}}$
$0.9=\dfrac { 1}{ 1+e^\frac{(E-5.5)}{0.0259}}$
${ 1+e^\dfrac{(E-5.5)}{0.0259}}=\dfrac{1}{0.9}$
${ 1+e^\dfrac{(E-5.5)}{0.0259}}=1.1111$
$\therefore e^\dfrac{(E-5.5)}{ 0.0259}={ 1.1111}-1$
$\therefore e^\dfrac{(E-5.5)}{ 0.0259}={ 0.1111}$
Taking log on both sides,
$\log {e^{(E-5.5)\over 0.0259}}=\log{ 0.1111}$
$\therefore\dfrac{(E-5.5)}{ 0.0259}=-0.9543$
${{(E-5.5) }}=-0.9543\times0.0259$
${{(E-5.5) }}=-0.0247$
$E=-0.0247+5.5$
$E=5.4753$
$\therefore E=5.4753 \ eV$