written 3.6 years ago by |
Fermi Level in Intrinsic semiconductors:
- For intrinsic semiconductors, it can be shown that fermi energy level EF lies midway between valence band and conduction.
- At any temperature T >$0 ^\circ \ K$, where$n_e : Number \ of \ electrons \ in \ conduction \ band, \ n_v= $Number of holes in valence band.
We have,$n_e=N_C \ e^{-(E_C-E_F)/KT} $
where$N_C=Efficiency $ density of states in conduction band
and$n_v = N_V \ e^{-(E_F-E_V)/KT} $
where$N_V=$ effective density of states in valance bandFor best approximation:$N_C = N_V \ $
For intrinsic semiconductor$n_c= n_v$
$N_C .\ e^{-(E_C-E_F)/KT} = N_V. \ e^{-(E_F-E_V)/KT} $Hence,$\dfrac {e^{-(E_C-E_F)/KT}}{\ e^{-(E_F-E_V)/KT}}=\dfrac {N_V}{N_C}$
$Hence ,\ e^{-(E_C-E_F-E_F+E_V)/KT} = \dfrac {N_V}{N_C}$
$Hence ,\ e^{-(E_C+E_V-2E_F)/KT} = \dfrac {N_V}{N_C}$
as$N_V=N_C=1$
$ e^{-(E_C+E_V-2E_F)/KT} = 1$
* Taking log on both sides we get,$ -(E_C+E_V-2E_F)/KT=0$
Hence,$ (E_C+E_V)=2E_F $
* $\dfrac {(E_C+E_V)}{2}=E_F $, Thus an intrinsic semiconductor lies at the center of the forbidden energy gap in the Fermi level.