0
3.2kviews
For an intrinsic semiconductor show that the Fermi level lies in the center of the forbidden energy gap.
1 Answer
written 3.9 years ago by |
Fermi Level in Intrinsic semiconductors:
We have,ne=NC e−(EC−EF)/KT
whereNC=Efficiency density of states in conduction band
andnv=NV e−(EF−EV)/KT
whereNV= effective density of states in valance band
For best approximation:NC=NV
For intrinsic semiconductornc=nv
NC. e−(EC−EF)/KT=NV. e−(EF−EV)/KT
Hence,e−(EC−EF)/KT e−(EF−EV)/KT=NVNC
Hence, e−(EC−EF−EF+EV)/KT=NVNC
Hence, e−(EC+EV−2EF)/KT=NVNC
asNV=NC=1
e−(EC+EV−2EF)/KT=1
* Taking log on both sides we get,−(EC+EV−2EF)/KT=0
Hence,(EC+EV)=2EF
* (EC+EV)2=EF, Thus an intrinsic semiconductor lies at the center of the forbidden energy gap in the Fermi level.