0
1.4kviews
Zn has hcp structure. The nearest neighbour distance is 0.27 nm. The atomic weight of Zn is 65.37. Calculate the volume of unit cell, density and atomic packing fraction of Zn.
1 Answer
0
56views

We have,

a = 0.27nm = $0.27 \times 10^{-9}$ m.

A = 65.37

As Zn has HCP structure,

we know, 

$3 \sqrt{2} a^{3} \rho = n \dfrac{M}{N} $

where M= Atomic weight of Zn, N= Avagadro's number= 6.023 \times 10^{23} 

Mass=$ n \dfrac{A}{N}$

$=6 \times \dfrac{65.37}{6.023 \times 10^{26}}$

$=6.512 \times 10^{-25}$ kg.

Volume of unit cell= $3 \sqrt{2} a^{3}$

= $3 \sqrt{2} \times (0.27 \times 10^{-9}) ^{3}$

= $8.3508 \times 10^{-29}$ m3

Density=$\dfrac{Mass}{Volume} $

= 7798.0553 kg/m3

Atomic packing factor of a HCP unit cell = $\dfrac{\pi}{3 \sqrt{2}}$ = 0.74.

Please log in to add an answer.