0
4.0kviews
A 5m long simply supported beam carries a superimposed load of $20kN/m$.

Design the mid span section of the beam if its effective depth is kept constant at 500mm.

Using

1) Ultimate load theory and

2) Limit state theory Neglect self weight of the beam. Use $M_{20}/F_{e415}$ steel. Comment on the results obtained using either theory.

1 Answer
1
260views

Given: b= 250mm(Assumed)

d= 500mm

$$w_L=20kN/m$$

L=5m

To find

  1. Ast = ? (ULM Method)
  2. Ast = ? (LSM Method)

1) ULM Method

$$w_d=1.5 D.L+2.2L.L \\ w_d=0+(2.2×20) \\ w_d=44kN/m$$

Now

$$M_u=\frac{w_d×l^2}{8}=\frac{44×5^2}{8}=137.5 kNm$$ Also

$$M_{umax}=0.25f_{ck} bd^2=0.25×20×250×500^2=312.5 kNm$$

$M_u \lt M_{umax}→$ Singly reinforced section

$$M_u=C_u × l_a=\frac{2}{3}×f_{ck} b×a×\Big(d-\frac{a}{2}\Big) \\ 137.5 ×10^6=\frac{2}{3}×20×250×a×(500-0.5a) \\ a=90.73mm \\ M_u= T_u×l_a=f_y×Ast×\Big(d-\frac{a}{2}\Big) \\ 137.5 ×10^6=415×Ast×\Big(500-\frac{90.73}{2}\Big) \\ Ast = 728.77 mm^2$$

Case 2: LSM Method

$$w_d=1.5×20=30kN/m \\ M_u=\frac{w_d×l^2}{8}=\frac{30×5^2}{8}=93.75 kNm \\ M_{umax}=0.138f_{ck} bd^2=0.138×20×250×500^2=172.5 kNm$$

$M_u \lt M_{umax}→$ Singly reinforced section $$Ast= \frac{0.5×20×250×500}{415}×\Big[1-\sqrt{1-\frac{4.6×93.75×10^3}{20×250×500^2}}\Big] \\ Ast=574.33 mm^2$$

Please log in to add an answer.