written 8.4 years ago by
teamques10
★ 68k
|
•
modified 8.4 years ago
|
Given: b= 250mm(Assumed)
d= 500mm
$$w_L=20kN/m$$
L=5m
To find
- Ast = ? (ULM Method)
- Ast = ? (LSM Method)
1) ULM Method
$$w_d=1.5 D.L+2.2L.L \\
w_d=0+(2.2×20) \\
w_d=44kN/m$$
Now
$$M_u=\frac{w_d×l^2}{8}=\frac{44×5^2}{8}=137.5 kNm$$
Also
$$M_{umax}=0.25f_{ck} bd^2=0.25×20×250×500^2=312.5 kNm$$
$M_u \lt M_{umax}→$ Singly reinforced section
$$M_u=C_u × l_a=\frac{2}{3}×f_{ck} b×a×\Big(d-\frac{a}{2}\Big) \\
137.5 ×10^6=\frac{2}{3}×20×250×a×(500-0.5a) \\
a=90.73mm \\
M_u= T_u×l_a=f_y×Ast×\Big(d-\frac{a}{2}\Big) \\
137.5 ×10^6=415×Ast×\Big(500-\frac{90.73}{2}\Big) \\
Ast = 728.77 mm^2$$
Case 2: LSM Method
$$w_d=1.5×20=30kN/m \\
M_u=\frac{w_d×l^2}{8}=\frac{30×5^2}{8}=93.75 kNm \\
M_{umax}=0.138f_{ck} bd^2=0.138×20×250×500^2=172.5 kNm$$
$M_u \lt M_{umax}→$ Singly reinforced section
$$Ast= \frac{0.5×20×250×500}{415}×\Big[1-\sqrt{1-\frac{4.6×93.75×10^3}{20×250×500^2}}\Big] \\
Ast=574.33 mm^2$$