0
1.4kviews
If x=cosθ-rsinθ, y=sinθ+rcosθ prove that dr/dx = x/r
1 Answer
written 3.9 years ago by |
x=cosθ−rsinθ, y=sinθ+rcosθ Squaring and adding, x2+y2=(cosθ−rsinθ)2+(sinθ+rcosθ)2 x2+y2=cos2θ−2rsinθcosθ+r2sin2θ+sin2θ+2rsinθcosθ+r2cos2 x2+y2=(cos2θ+sin2θ)+r2(cos2θ+sin2θ)=1+r2 Implicitly differentiating x2+y2=1+r2, w.r.t x, 2x+0=0+2rdrdx ∴drdx=xr