written 3.5 years ago by |
- $\mathrm{Given}:\sin^{-1}(e^{i\theta})$
- $Let \sin^{-1}(e^{i\theta}) = x + iy$
$e^{i\theta}= \sin (x +iy)$
$\cos\theta + i\sin\theta = \sin x\ \cos\ hy + i\cos x\ \sin\ hy$
- Comparing real and imaginary parts,
$\cos \theta = \sin x\ \cos\ hy\cdots \mathrm{Equation \ 1}$
$\sin x= \dfrac{\cos\theta}{\cos h y}$
$\sin \theta = \cos x\ \sin hy\cdots \mathrm{Equation \ 2}$
$\cos x= \dfrac{\sin\theta}{\sin h y}$
- $But\ \sin^2x + \cos^2x = 1$
$ \dfrac{\cos^2\theta}{\cos h^2 y} + \dfrac{\sin^2\theta}{\sin h^2 y}=1$
$ \cos^2\theta\ \sin\ h^2 y\ + \sin^2\theta\ \cos h^2 y =\cos h^2 y \times \sin h^2 y$
$(1-\sin^2\theta)\ \sin h^2 y\ + \sin^2\theta\ (1+\sin h^2 y) =(1+\sin h^2 y) \times \sin h^2 y$$
$\sin h^2 y\ - \sin^2\theta\ \sin h^2 y\ + \sin^2\theta\ +\sin^2\theta\ \sin h^2 y =\sin h^2 y +\sin h^4 y$
$sin^2 \theta = sin h^4y$
$sin \theta = sin h^2y\cdots \mathrm{Equation \ 3}$
$\sqrt{sin \theta} = sinhy$
$y = sinh^{-1} \sqrt{sin \theta}$
- $ Squaring\ equation\ 2, \sin^2 \theta = \cos^2 x\ \sinh^2y$
$\sin^2 \theta = \cos^2 x\ \sin \theta\cdots \mathrm{From\ Equation \ 3}$
$\cos^2 x = \sin\theta$
$\cos x = \sqrt {\sin\theta}$
$ x = \cos^{-1}(\sqrt {\sin\theta})$
- $Thus, \sin^{-1}(e^{i\theta}) = x + iy = \cos^{-1}(\sqrt {\sin\theta}) + i \sinh^{-1} \sqrt{\sin \theta}$
- $Hence, Real\ part\ is\ x = \cos^{-1}(\sqrt {\sin\theta}) and\ Imaginary\ part\ is\ y = \sinh^{-1} \sqrt{\sin \theta}$