0
13kviews
Separate into real and imaginary parts of tanh-1 (x+iy).
2 Answers
written 3.9 years ago by |
Given:tanh−1(x+iy)
tanh−1x=12log[(1+z)(1−z)]
tanh−1(x+iy)=12log[(1+x+iy)(1−x−iy)]
=12log[(1+x+iy)−log(1−x−iy)]
=12[12log[(1+x)2+y2]+i.tan−1(y1+x)]
$= -\dfrac 1 2 \bigg[\dfrac 1 2 \log [ {(1-x)^2+y^2]}-i …