0
417views
ifA=[12−2−1300−21]
then find two non-singular matrices P&Q such that PAQ is in normal form also find ρ(A) and A-1.
written 3.9 years ago by |
A=[12−2−1300−21]A=I3AI3i.e.[12−2−1300−21]=[100010001]A[100010001]ByR2+R1→[12−205−20−21]=[100110001]A[100010001]ByC2−2C1→[10−205−20−21]=[100110001]A[1−20010001]ByC3+2C1→[10005−20−21]=[100110001]A[1−22010001]ByC2+2C3→[10001−2001]=[100110001]A[122010021]ByR2+2R3→[100010001]=[100112001]A[122010021]which is in normal form∴RankofA=Q(A)=3To find A^{-1} we see that,I=PAQ∴AQ=P−1∴A−1AQ=A−1P−1∴Q=A−1P−1∴QP=A−1P−1P=A−1Now,QP=[122010021][100112001]=[326112225]∴A−1=[326112225]