0
397views
( u=f(e^{y-z},e^{z-x},e^{x-y}) ext{find} dfrac{partial u}{partial x}+dfrac{partial u}{partial y}+dfrac{partial u}{partial z} )
written 3.9 years ago by |
Answer: Let u1=ey−z,u2=ez−x,u3=ex−y. Then by chain rule,
∂u∂x=ux=∂u∂u1∂u1∂x+∂u∂u2∂u2∂x+∂u∂u3∂u3∂x
=∂u∂u1.0−∂u∂u2.ez−x+∂u∂u3ex−y.
∴∂u∂x=−u2∂u∂u2+u3∂u∂u3...................................(1)
Similarly,
$\dfrac{\partial u}{\partial y}=u_y=\dfrac{\partial u}{\partial u_1}\dfrac{\partial u_1}{\partial y}+\dfrac{\partial u}{\partial …