0
786views
If tan (x+iy) = a+ib prove that ( anh 2y=dfrac{2b}{1+a^2+b^2} )
1 Answer
0
97views

Q.if tan(x+iy)=a+ibP.T tanh2y=2b1+a2+b2

Here we can use this formualatan(AB)=tanAtanB1+tanA.tanB

tan2iy=tan[(x+iy)(xiy)]=tan(x+iy)tan(aib)1+tan(x+iy)(tan(xiy)tan(x+iy)=a+ib,tan(xiy)=a+ib andtani2y=itanh2ysubstituting the value in the above equation

itanh2y=(a+ib)(aib)1+(a+ib)(aib)itanh2y=i2b1+a2+b2tanh2y=2b1+a2+b2(Proved)

Please log in to add an answer.