0
786views
If tan (x+iy) = a+ib prove that ( anh 2y=dfrac{2b}{1+a^2+b^2} )
1 Answer
written 3.9 years ago by |
Q.if tan(x+iy)=a+ibP.T tanh2y=2b1+a2+b2
Here we can use this formualatan(A−B)=tanA−tanB1+tanA.tanB
tan2iy=tan[(x+iy)−(x−iy)]=tan(x+iy)−tan(a−ib)1+tan(x+iy)(tan(x−iy)tan(x+iy)=a+ib,tan(x−iy)=a+ib andtani2y=itanh2ysubstituting the value in the above equation
itanh2y=(a+ib)−(a−ib)1+(a+ib)(a−ib)itanh2y=i2b1+a2+b2tanh2y=2b1+a2+b2(Proved)