Molecular weight of the impurities are,
- MgCO3$= {24+12+\big(3\times16\big)=84}$
- CaCO3 $= {40+12+\big(3\times16\big)=100}$
- Mg(NO3)2 $= {24+2\big[14+\big(3\times16\big)\big]=148}$
- CaCl2 $= {40+\big(2\times35.5\big)=111}$
Calculations for CaCO3 Equivalents:
Impurity |
Amount in ppm |
Molecular Weight |
Multiplication Factor $(x) $ |
CaCO3 Equivalent in ppm $(y) $ |
MgCO3 |
84 |
84 |
$x = \dfrac{100}{84}$$= {1.19}$ | $y = {Amount\times x}$ $ = {99.96}$ |
--- |
--- |
--- |
--- |
--- |
CaCO3 |
40 |
100 |
$x = \dfrac{100 } {100}$$= {00 1}$ | $y = {Amount\times x}$$= {40}$ |
| Mg(NO3)2 | 37 | 148 | $x = \dfrac{100 } {148}$$= {0.67}$ | $y= {Amount \times x }$$= {25}$ |
| CaCl2 | 55.5 | 111 | $x = \dfrac{100}{111}$$= {0.90}$ | $y = {Amount\times x}$$= {50}$ |
| KCl | 10 | - | - | - |
* KCl do not contribute hardness, so its CaCO3 equivalent is not calculated.
* Amount of lime required$= $$\dfrac{74}{100}$${\big[ Temporary \: Ca+ 2\times Temporary \: Mg+ Permanent \:Mg\:\big] }$
$=\dfrac {74}{100}$${\big[40+\big(2 \times 99.96\big)+\big(2 \times 25\big)\big]}$
$= $${214.58\:mg/lit}$
* Amount of Soda required$= $$ \dfrac{106}{100}$${\big[\:Permanent\:Ca+Permanent\:Mg\:\big] }$
$ =$$\dfrac {106}{ 100}$${\big[\:25+50\:\big] }$
$ =$${79.5\:mg/lit}$
* Amount of Lime for softening 1 Litre of Water$ =$$\dfrac{214.58\times1}{10^6}$$= 2.146\times10^{-4}\:kg$
* Amount of Soda for softening 1 Litre of Water$= $$\dfrac{79.5\times1}{10^{6}}$$= 7.95\times10^{-5}\:kg$
* Therefore, for softening one liter of Water, lime required is${2.146\times10^{-4} kg}$ & Soda required is$ {7.95\times10^{-5} kg}$. |