0
4.6kviews
A steel bar is 900mm long; its two ends are 40mm and 30mm in diameter and the length of each part of rod is 200mm. The middle portion of the bar is 15 mm in diameter and 500 mm long.

If bar is subjected to an axial tensile load of 15 kN, find its total extension,

3 Answers
1
235views

$$ \text { Assume: } E_{\text {steel}}=2 \times 10^{5} \mathrm{N} / \mathrm{mm}^{2} \quad \text { Find: } \delta_{L}=? $$ ![enter image description here][1] $$ \begin{aligned} \delta L &=\delta L_{1}+\delta L_{2}+\delta L_{3} \ \delta L &=\left(\frac{P L}{A E}\right)_{1}+\left(\frac{P L}{A E}\right)_{2}+\left(\frac{P L}{A E}\right)_{3} \ \delta L &=\frac{P}{E}\left(\frac{L_{1}}{A_{1}}+\frac{L_{2}}{A_{2}}+\frac{L_{3}}{A_{3}}\right) \end{aligned} $$ $$ \begin{aligned} \delta L=& \frac{P}{E\left(\frac{\pi}{4}\right)}\left(\frac{L_{1}}{d_{1}^{2}}+\frac{L_{2}}{d_{2}^{2}}+\frac{L_{3}}{d_{3}^{2}}\right) \ \delta L=& \frac{15 \times 10^{3}}{2 \times 10^{5}\left(\frac{\pi}{4}\right)}\left(\frac{200}{40^{2}}+\frac{500}{15^{2}}+\frac{200}{30^{2}}\right) \ \delta L=0.245 \mathrm{mm} \end{aligned} $$

0
98views

$$ \text { Assume: } E_{\text {steel}}=2 \times 10^{5} \mathrm{N} / \mathrm{mm}^{2} \quad \text { Find: } \delta_{L}=? $$

0
33views

$$ \text { Assume: } E_{\text {steel}}=2 \times 10^{5} \mathrm{N} / \mathrm{mm}^{2} \quad \text { Find: } \delta_{L}=? $$

Please log in to add an answer.