0
2.3kviews
A steel rod is subjected to an axial pull of 25kN. Find maximum diameter if the stress is not exceed $100N/mm^{2}$. The length of rod is 2000mm and take $E = 2.1 \times 10^{5} N mm^{2}$
1 Answer
1
146views

$$ \begin{array}{l}{\text { Data: } P=25 k N, \quad \sigma=110 N / m m^{2}, E=2.1 \times 10^{5} \mathrm{N} / \mathrm{mm}^{2}} \ {\text { Find: } d_{\min }} \ {\sigma=\frac{p}{A}=\frac{P}{\left(\frac{\pi \mathrm{d}^{2}}{4}\right)}}\end{array} $$ $$ \begin{array}{l}{\mathrm{d}^{2}=\frac{\mathrm{P}}{\left(\frac{\pi \sigma}{4}\right)}} \ {\mathrm{d}=\sqrt{\frac{\mathrm{P}}{\left(\frac{\pi \sigma}{4}\right)}}} \ {\mathrm{d}=\sqrt{\frac{25 \times 10^{3}}{4}}} \ {\mathrm{d}=17.84 \mathrm{mm}}\end{array} $$

Please log in to add an answer.