written 5.4 years ago by | • modified 5.4 years ago |
Data: d = 500 mm
Calculate : k
Radius of gyration (K): The radius of gyration of a given area about any axis is the distance from the given axis at which the area is assumed to be concentrated without changing the MI about the given axis.
$K=\sqrt{\frac{I}{A}}$
Where, I = Moment of Inertia $(mm)^{2}$ A = Cross Sectional Area $(mm)^{2}$ K = Radius of Gyration. $(mm)^{2}$
Application: It is used in Euler’s formula to determine buckling load on long column.
$K=\sqrt{\frac{I}{A}}$
$\mathrm{K}=\sqrt{\frac{\frac{\pi \mathrm{d}^{4}}{64}}{\frac{\pi \mathrm{d}^{2}}{4}}}$
$\mathrm{K}=\sqrt{\frac{\frac{\pi \times \mathrm{500}^{4}}{64}}{\frac{\pi \times \mathrm{500}^{2}}{4}}}$
$\mathrm{K}=\sqrt{\frac{3.068 \times 10^{9}}{196.35 \times 10^{3}}}$
$\mathrm{K}=125 \mathrm{mm}$