0
640views
Let x be a finite sequence with DFT
written 5.3 years ago by | • modified 5.3 years ago |
$ X=\operatorname{DFT}[x]=[0,1+j, 1,1-j] $
Using the properties of the DFT determine the DFT's of the following:
i) $y[n]=e^{j(\pi / 2) n} x(n)$
ii) $y[n]=\cos (\pi / 2) n \ x(n)$
iii) $y[n]=x[(n-1)_4]$
iv $y[n]=[0,0,1,0] \oplus x[n]$ with $\oplus$ denoting circular convolution
ADD COMMENT
EDIT